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1. Executive Summary

This report documents a summary of the work accomplished during the first
six months under the project entitled “Identification of Airborne Radar Targets”
(Contract # N00014-86-K-0202). During this period of the renewed contract, the
progress toward realizing the goals set forth in the statement of work has been rapid,
and has produced a number of key interim results. In particular, we have:

1. Developed techniques to estimate and parameterize canonical scattering cen-

ters of a radar object. The results of this technique are compared with those

obtained using an ARMA estimation technique for single polarization data.

2. Developed and evaluated the performance of a signal processing technique that
estimates the polarization characteristics of target scattering centers. This
technique incorporates polarization-diverse data to obtain a super-resolved
down-range cross-section of the target showing polarization ellipses of the

predominant scattering centers.

3. Evaluated the feasibility of using bispectrum processing techniques for the
purpose of radar target characterization and identification. The results of
this study have identified advantages of bispectrum processing for frequency-
-dispersive scatterers and indicate the possibility of identifying targets from

the estimated bispectral responses.

4. Developed improved techniques for estimating the statistical parameters of
observed symbol strings for the purpose of target identification based on struc-
tural pattern recognition. In addition, we have developed a tormuiation of the
target identification algorithm that resembles a tree classifier. Reformulating
the algorithm in this way reveals the structural nature of the classifier to the
extent that a relative evaluation of the discrimination capability of particular

symbols may be possible.

The remainder of this report is organized into chapters that more fully discuss

progress and ongoing research in the areas mentioned above.




2. High Resolution Radar Target Modeling Using ARMA Models

This chapter discusses research high resolution modeling of radar data to ob-
tain target impulse responses. The techniques are parametric, and rely on scatter-
ing center location estimation, and parameterizing the scattering center by various
attributes. This chapter focuses on single polarization data. Two methods are
considered. One is a canonical scattering center analysis, which employs nonlin-
ear minimization techniques to obtain the estimate. The other approximates this
canonical scattering model by an Autoregressive Moving Average (ARMA) model,
and uses ARMA estimation techniques derived from the signal processing literature.
The latter method is more computationally efficient than the former method.

We begin with a discussion of canonical scattering centers. We next present the
ARMA modeling method, and briefly describe the algorithm which is used. Next
we present simulation results obtained using compact range data measurements
of model aircraft. Finally, we discuss the canonical scattering center estimation
method.

2.1 Canonical Scatterers

It is well-known [1] that scattering of electromagnetic waves at high frequencies,
i.e. at frequencies such that the wavelength is small compared to the scatterer, can
be modeled as a set of independent scattering centers. There are several varieties
of cauonical srattering centers used in this process; typical examples are the point,
edge and plate scatterers and the corner reflector [1].

If a target consisting of m scatterers is illuminated using a CW radar, then the

backscattered field received by a linearly polarized anterna will give a signal of the

form [2]:
m =J2remfy ¢ .
yk=Zng < (g2 fi)" (2.1)
=1
where K is the amplitude, r; the relative range, and ¢, the type of the ;th scatterer;

fr 1s the kth frequency, and m is the number of scatterers. For the canonical

scatterers in [2], ¢; takes on the following values




t; € {-+ --0.5,0,0.5,1} (2.2)
In addition, for stepped frequencies, we can represent f; by
fe=fo+kds,, £=0,1,2,....N -1 (2.3)

where fo, é; and N are given parameters of the system under consideration. The
frequency fo represents the lowest frequency the radar system transmits and &,
is the size of the frequency step. Estimation of the parameters in (2.1) from N
measurements leads to a canonical scattering description of the target; see [2].

This model, while based on the physical properties of the scattering process,
has the disadvantage of being non-linear. A non-linear estimator typically requires
more data to converge to within a given distance of the correct estimate, and also
suffers from the possibility of convergence to a false (local, but not global) minimum,
leading to incorrect estimates.

We are currently investigating two estimators for this model. The first estimator
uses the model (2.1) directly, and estimates the parameters of that model through
a multi-step, non-iterative algorithm. If desired, the quality of the resulting esti-
mates can be improved further by using the multi-step estimate as an initial guess
for an iterative non-linear least-squares estimator. The second estimator uses an
approximate model of (2.1) that allows linear estimation techniques, specifically an
ARMA algorithm. The second algorithm is more computationally efficient, and has
been studied more extensively.

The approximate model for linear estimation is obtained by replacing the (j27 fi)!
factor in (2.1) with p*. By suitably adjusting the amplitude, the approximate model
can be made to match the original model if the bandwidth involved is not too large.

Thus we arrive at:
Ye = Zdipf (2.4)
1=1
where d, is in general not equal to K, in (2.1) because of the approximation involved.
The vanable p; can be found from:

p, = pic= IR (2.5)




In practice the absolute range is not used; instead, r; represents the range relative to

a zero range reference point. R then represents the maximum unambiguous range

(&
R=—.
26,

It should be noted that for ¢ = 0 the correspondence is exact (p will be 1).
The energy associated with a single scattering center is the square of the absolute

value of its contribution to the amplitude, or

= 2|, |2k 21— oY
Po= X ldPpd™ = 1 = (2.6)
a==0 1

Equations (2.4) and {2.6) will be used to form the approximate parametric model

of target scattering.

2.2 ARMA Models

In this section we will discuss estimation techniques for the approximate model.
For a more detailed analysis of this model and the corresponding estimation tech-
niques, see (3] and [4].

Equnation (2.4) can be formed as the solution of a linear difference equation,

m m—1

Yk + zaiyk+i = Z Cibkyi (2.7)
=1 =0
Alg7lyx = C(g7")ék (2.8)

where é; is the unit impulse sequence. It can be shown [5] that the {p;} in equation
(2.4) are the roots of the A(z) polynomial, and the coefficients {d;} the partial
fraction residues of C(z) and A(z). It should be observed that this means that the
radar cross section as a function of relative range can be found by taking the square
of the absolute value of

C((.jr:(l—2r/R)

A(ejw(l—'lr/R)

= _ - , 0<r<R
Zl eam(i-2r/R) _ =T=

1=

Y(r) =




By observing that for k£ > 0 the right hand side in (2.7) equals zero, we can find

a linear least squares estimator for the A(z) polynomial:

- 1T -

Ym+:r Ymo ... Y1 amMm
Y ‘+2 y '+1 Y2 ~ 0 (2.9)
a,
| Yv-1 YN-2 --- UN-M-or || 1]

where M is some integer at least equal to m and where equality will hold for noiscless
data that fits the model perfectly. Appropriate ways for choosing M are discussed
in [4].

The performance of this estimator can be improved through the use of the
singular value decomposition (SVD) as follows: find the SVD of the matrix ¥ on
the left hand side of (2.9); let

01202 ...20pm41 2 0.

be the resulting singular values. Set o,41...0M + 1 equal to zero, reconstruct ¥
and solve (2.9) with the new Y. The value of n is chosen to be such that the
first large drop in the value of the {o;} falls between o, and o,,;. This choice
is motivated by the ability of the SVD to partially reject the effects of noise and
unmodeled dynamics on the estimate. This issue is discussed in further detail in
[4].

Once the A(z) polynomial has been found, the {p;} can be estimated through
standard polynomial rootfinding techniques. Given the {p;}, the {d;} can be found

from
[T ) ¥ dy [ o
: : -] ¢ |=~o0 (2.10)
AR Vel dn_y YN-1

where p; i« the ¢ *'mate for p, found above.
Above we . -~puted an estimate of a polynomial A (z) of order M > m, and a
corresponding set of M zeros {p;},. We also computed amplitudes corresponding

to these zeros. The next step is to separate the m zeros that correspond to the




radar target (signal zeros) from the remaining spurious zeros. The zero separation
process relies nn the observation that since the spurious zeros correspond to modes
that are not present in the data, their estimated energy should be low. To take
advantage of this property, we use the following strategy. First, the amplitudes
{d:}*,, corresponding to all M zeros are found using equation (2.10). Then, the
cnergy of each mode is computed using equation (2.6). The m zeros whose cor-
responding energy is the highest are kept and the remaining ones are discarded.
Then, the energy estimates for the m kept zeros can be refined by recomputing the
amplitude estimation using (2.10) with only the m selected zeros. However, since
the energies for the discarded zeros is low, the diflerence between the two estimates

should generally be small, so this refinement step may be omitted.

2.3 Experimental Results

In this section we describe results obtained with both types of algorithm. We
first desciibe results obtained by applying the ARMA algorithm to data obtained
from the ESL Compact Range and then present results from the application of the

canonical estimator to simulated data.

2.3.1 Results from Applying ARMA Techniques to Compact Range
Data

The main aim of this section is to demonstrate that the ARMA type algorithm
presented above is robust to changes in model order M and number of singular
values kept n, performs well in the presence of noise and achieves consistent results
across different frequency ranges. On the other hand, the algorithm readily detects
differences between aircraft and is able handle changes in aspect angle.

Figure 2.1 shows estimated responses for a 1:130 model of the Concord using
N = 30 data points taken evenly spaced from 18-26 GHz (corresponds to 138-
200 MHz on a full-size Concord) and model orders M = 5 and 10, keeping n = 3
singular values and m = 2 zeros.

Figure 2.2 shows estimates for M = 10 order model from the same data as

above, keeping n = 3,5 and 7 singular values and m = 2 zeros.
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Figure 2.1: Response of the Concord for N = 30, M = 5and 10, n = 3, m = 2.
Date taken between 18-26 GHz.
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Figure 2.2: Response of the Concord for N =30, M =10, n =3,5and 7, m = 2.
Data taken between 18-26 GHz.
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Figure 2.3: Response of the Concord for N = 30, M =10, n = 5, m = 2. Data
taken between 18-26 GHz with 10 dB SNR.
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Figure 2.4: Response of the Concord for N = 20, M = 10, n = 7, m = 4. Data
taken between 6.25-12 GHz at 0 and 20 degree aspect angle.
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Figure 2.3 shows estimates for M = 7, n = 5 and m = 2 but with Gaussian
noise added at 10 dB SNR.

The above figures demonstrate by their similarity that the algorithm is robust
with respect to the effects of noise, choice of order and choice of the number of
singular values to keep.

Figure 2.4 shows estimated responses for the Concord taken from N = 20 data
points in a 6.25-12 GHz range (48-92 MHz for a full-scale target) using M = 10,
n = 7 and m = 4. We have used two data sets here, one taken at an aspect angle of
zero degrees, the other at 20 degrees. The figure clearly shows the relation between
the two estimated responses. We can see that the second large peak has split into
two peaks at 20 degrees, and all the scattering centers are a bit closer to each other,
as a result of the apparent foreshortening of the target in the downrange direction.

For reference, Figure 2.5 gives the result of an IFFT performed on the 18-26 GHz
data, and Figure 2.6 gives a properly scaled picture of the Conenrd.

2.3.2 Direct Estimation of the Canonical Scatterer Model

In this section we detail an algorithm that directly estimates the { K}, {r;} and
{t;} parameters of equation (2.1). The order of estimation is first the {r;}, then the
{t;} and finally the { K} parameters.

The {r;} parameters are estimated in the same way as as for the approximate
model in the previous section. We then find the {¢;} parameters by applying the

following three step procedure for all scatterers.

1. For the ith scatterer, modulate the sequence {y;} with e , thus trans-

.th

lating the :*™ scatterer to relative range zero.

2. Apply a low-pass filter to the modulated data y;. Note that this is a low-range
filter, not a low-frequency filter. This filtering operation should leave the ;th
scatterer as the only component of the filtered data. Note that it is important

that the filter have linear phase for the third step to succeed.

3. The filtered data can now be described by

11
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v = Ki(j27 fi)"
From which it follows that
Ln y, = LnK; + t,Ln (527 f}) (2.11)

where Ln is the main branch of the complex natural logarithm. The param-
eters {¢;} can be found from a least squares solution to equation (2.11). and

finding the least squares solution.

Finally, the {K;} can be found using a least squares method in equation (2.1),
using the estimates for {r;} and {¢;} found above.

If desired, thc cstimates found with the aid of the multi-step procedure above can
be used as an initial guess for a non-linear least squares estimator. The accuracy of
the estimates for simulated data has been sufficient that this has not been necessary

so far, but we anticipate that such refinement may be needed for real data.

14




3. Exponential Modeling of Fully Polarized Radar Return

The horizontal and vertical radar return from a target illuminated with stepped
frequency circularly polarized radiation can each be modeled a sum of complex
exponentials. The scattering points of the target are thus the poles of these models,
and amplitudes associated with each pole represent the scatterer’s horizontal and
vertical return. One approach is to use this modeling on both the horizontal data
and the vertical data independently. This model can then be used to identify the
target.

However, it is reasonable to assume that if a scattering center appears in the
horizontal return then it is also present in the vertical return. Thus when estimat-
ing the poles of the model, both the horizontal and vertical information are used
simultaneously to estimate the ranges of the scattering centers. To make the esti-
mate more resilient to noise we employ Singular Value Decomposition (SVD) on the
associated linear prediction matrix. Also, since scatterers can be expected to cause
peaky responses, poles in the linear prediction model which are not within a certain
distance from the unit circle are eliminated. Finally, we estimate the horizontal and
vertical amplitude characteristics independently using the appropriate polarization
data.

Once the model has been determined, the angle at which the poles appear in the
z-plane represent the downrange location of each of the scatterers. The horizontal
and vertical amplitudes associated with each pole contain the information about
that scatterer’s polarization effect on the incident radar wave. These polarizations
are in general elliptical and, along with the scatterer’s range, can be used to identify

© the target.

3.1 Modeling the Scatterers

Assume that two sets of N data points are generated from M complex exponen-
tials with white Gaussian noise added, where each set represents the horizontal and

vertical return from a left circularly polarized incident wave, s;; and s, respectively.

15




wi(n)

r+
P wo(n)

-4l

sui(n) k=1 | Guk

} n=1,.. ,N. (3.1)

Where p; is the kth common pole, axi is the horizontal amplitude associated with
that pole, and a,; is the vertical amplitude associated with the same pole. The

backward linear prediction equations can then be set up as follows[6][7][8].

sh1(2) Sh1(3) shz(L+ 1) ] [ Shl(l) W
sn(3) : '
: : B, :
Shz(N -—L—{-l) Sh[(N) . - Shz(N—L) (3 0)
501(2) 501(3) e Sug(L + 1) z’ Sul(l) -
su1(3) . L .
L su(N=L+1) ... ... su(N) | | su(N — L) |
or
Sbh=—s (3.3)

where L is the order of prediction, and b is the coefficient vector of the polynomial

B(z) given by
B(z)=1+bz"'+... +bpzt (3.4)

Note that both sets of data are used simultaneously to estimate a single set of
prediction coefficients.

The solution involves forming the matrix [s : S}, performing a Singular Value
Decomposition (SVD) on it, then truncating all but the first M singular values to

arrive at a better estimate [é : 5'] . Next, b is found using the pseudoinverse of §,

[~ ot 2

e (3.9)

Now the estimated poles can be determined as:
. 1

pizm t=1,...,L (3.6)
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Since scatterers result in peaky responses, those poles which do not lie within a
given annular region about the unit circle can be eliminated from the model. The
following criterion has been found to work well for radar data:

ﬁ < Ip:fN < 100 (3.7)
We keep only those poles in (3.6) which satisfy (3.7). Once these L’ poles have been
determined, the amplitude equations for both the horizontal and vertical compo-

nents can be formed.

P} ... BL || @n @w su(l)  su(l)
= : : (3.8)
Y ... Y anL QL sa(N) su(N)
or
P.‘i = Sa (39)
Total least squares can now be used to estimate the amplitudes.
i SH 5Y ™ pH
A= (P"P)" PHs, (3.10)

3.2 Determining Scatterer Locations and Associated Polarizations

Now that we have ag;, a,;, and p;, for each scatterer i, we can determine its

range 7; and its polarization in terms of tilt 7, ellipticity €;, and major axis A,.

They are given by the following:

;o= L, (3.11)
7= %tan_l (tan(2'"7i)cos (5.)) (3.12)
N S stn (24;)

€ = 2szn (—sin (6,) ) (3.13)

st 5‘ sec(T;
A= ’ n( )'I ) (3.14)

'
1 2tan(i.)jas(6.) + tan2(#)
E‘]Z‘ Ellgll Eg'
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where

E,;
5, = tan~! <—i) (3.15)

1t

and
5, = Lay; — Lag (3.16)
Ey = |an (3.17)
E, = |aul (3.18)

The ranges of a target’s scatterers and their respective polarization characteris-

tics can thus be used to identify the target.

3.3 Simulation Results

The above estimation procedure was applied to data obtained from compact
range measurements of several small aircraft models; in particular, we used scale
models of the 707, 727, 747, DC10, and the Concord. The ESL compact range
was used to measure horizontal transmit with horizontal and vertical receive and
vertical transmit with horizontal and vertical receive, spp(f), Sur(f) = sru(f), and
$yu( f) respectively. The measurements were made for frequencies f between 1.5 and
12 GHZ at 50 MHz steps, thus resulting in 211 data points for each polarization.

From this data, sy(f) and s,(f) are found using the following transformation:

sni( f) Sun(f) suu(f) 1 1
- 7 3.19
[ Svl(f) J [ Svh(f) Suu(f) } { .7 J \/_2— ( )

The following simulations were done with N = 80 data points from the upper
half of frequency range. In all cases, the nose on aspect angle data was used.

The models range from about 23 to 43 cm in length, so an unambiguous range
R = 75cm 1s needed to get resolution between the model’s individual scatterers.
Since Af = 35, where c is the speed of light, for this R, Af = 200Mhz. This
corresponds to every fourth point in the data set. To allow use of all 80 points,

the backward prediction equations were written so as to interleave four sets of 20
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points cach. The amplitudes associated with each pole similarly used the four sets
of data.

Finally, model order and the number of singular values to keep were chosen as:

= 10 and M = 5. The results for each plane with no noise added to the data
appear in Figs. 3.1-3.5. Each scatterer is represented by an ellipse which describes
its polarization effect at the appropriate range. The scale is in meters and is for
ellipse location. The ellipse factor of .2 can be used to multiply the range scale to
see ellipse magnitudes. A scale plan view for each plane also appears in order to

match up ellipses with their physical scatterer.
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Figure 3.1: 707 Scatterers and Polarizations
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Figure 3.2: 727 Scatterers and Polarizations
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Figure 3.3: 747 Scatterers and Polarizations
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Figure 3.4: DC10 Scatterers and Polarizations
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Figure 3.5: Concord Scatterers and Polarizations
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Noise was then added for SNRs of 10dB, 5dB, and 0dB to the DC10 data. Five
simulations with different noise realizations for each SNR appear in Figures 3.6
3.8. Since the noise tends to make discrimination of ellipses difficult, a plot of range

vs. the length of the hypotenuse between each ellipse’s major and minor axis also

appears in each figure.
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Figure 3.7: DC10 Scatterers and Polarizations, SNR of 5dB
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Figure 3.8: DC10 Scatterers and Polarizations, SNR of 0dB
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The simulation results demonstrate that the procedure produces target signa-
tures which are unique and identifiable and that it stands up well in noise, par-
ticularly in finding the existence and range of a scatterer. This is due to the fact
that both sets of data, s,; and s,;, are used to determine the poles of the model.
Even at 0dB SNR the scattering centers are quite distinguishable, particularly in
the hypotenuse plots. The polarization ellipse for each scatterer, however, is not as
robust since its components are each derived from half of the data separately. Still,
the scatterer center location makes identification of the target possible in these high
noise situations. The scatterers also appear at downrange locations which corre-
spond with features of the planes such as wings, engine inlets, rudders, etc., which

gives physical significance to the model and helps to justify its use.
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4. A Study of The Bispectral Estimates of Radar Signals And
Application To Radar Target Identification

4.1 Introduction

This Chapter is concerned with the application of bispectrum estimation to
the analysis of radar signatures. The recent interest in bispectrum estimation is
motivated by the broad area of applications of higher order spectral estimates,
especially the bispectrum. Problems such as phase decoupling, signal nonlinearities
and skewness from Gaussian-like features can be solved and better understood using
bispectrum estimation. The use of higher order spectra is not an alternative for
lower order spectral analysis but rather a complementary process. Many features
embedded in measured data may not appear in lower order spectral analysis or
could be misinterpreted or misread. High order spectra may uniquely identify such
features and present them in a way which leaves less room for misinterpretation.

Radar measurement data contain a wide spectrum of information that corre-
sponds to various scattering mechanisms. In this study an attempt is made to use
bispectral analysis to identify such mechanisms. This attempt is motivated by the
fact that such mechanisms are often confused using first order spectral analysis.
Moreover, radar targets at certain signal to noise ratio and certain conditions of
azimuth and elevation may have similar lower order spectral responses but different
higher order spectral responses. Thus, the bispectrum can be used to discriminate
among targets that differ in fine details only.

Therefore, the two main reasons for studying bispectrum in radar signature anal-
ysis is to recover complex scattering features and to discriminate among targets that
differ in fine details rather than major features. Also, in this study we looked at
bispectral responses for frequency dispersive scatterers and found some interesting
advantages of the bispectrum under these conditions. Moreover, due to the correla-
tion involved in bispectrum estimation, the behavior of bispectral responses under
conditions of high noise is relatively less sensitive to noise corruption than lower
order spectral responses. Finally an attempt is made to classify radar targets based

on the corresponding bispectral responses.

28




4.2 Provlem Fuiuwlation: Birange Profile Theory

Radar scattering from an object is often measured as amplitude and phase at a
set of evenly spaced frequencies. This permits a transformation to the time domain
and thus the range domain by taking an inverse Fourier transform of the data. The
result is called the radar target impulse response [9]. In general there is a one to one
relationship between specific scattering mechanisms and the time such mechanisms
appear 1n the impulse response. One of the difficulties that this type of analysis has
is that complex targets often have multiple interactions. The result is that many of
the terms in the impulse response are related to the interactions rather than due to
the result of simple subcomponent scattering. Many of these multiple interaction
mechanisms can be identified as such by the application of the bispectrum to the
radar scattering data.

Also, this study indicates that the individual target scattering mechanisms are
more easily observed using the bispectrum under conditions of high noise or target
dispersive effects. It will be shown that these bispectral responses constitute robust
features which may be used in radar target identification schemes.

The radar scattering from a complex target can be effectively modeled as a

sequence of discrete scatterers. With this model each element of the set of complex

radar scattering data
Sp(f;) = Apexp(—j2nRypfj/c). (4.1)

where

S,(f;) = pttscattering coefficient at

jt* frequency

A, = amplitude of p"* scattering
coeflicient
R, = line of sight range betwcen

scatterers and radar zero phase

(& time) reference plane.
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f; = 7™ radar carrier frequency

¢ = speed of light.

This can be usefully converted to scalar form by simply taking the real part of the

scattering value.
R{S,(f,)} = Apcos(2n R, f;/c) (4.2)

Note that when data are represented in this form for the scattering from a
particular single point scatterer at a particular range frem the radar phase zero
reference plane (which may be located near or on the target), a sinusoidal variation
in the data as a function of frequency results. The amplitude of the sinusoid is
proportional to the scattering coeflicient of the scatterer, and the periodicity of the
sinusoidal variation (as a function of radar carrier frequency ) of the real part of
the the scattered signal is proportional to the line of sight distance of the scatterer
to the zero phase reference plane. If the scatterers do not interact, then the total

received signal will have the form
S:(f;) =" Aycos(2mR,f;/c) (4.3)
p

Note that computation of the spectrum of S, will yield values of A, for each R,.
Note on the other hand that if the scatterers interact (multiple interaction), then
a signal scattered from the latter part of a particular target will be influenced (or
modulated) by interaction with components of the target closer to the radar. This
interaction with other parts of the radar target prior to scattering from a particular
object on the radar target results in modulation-like effects in the range domain
profile which can be uniquely identified when the bispectral estimation process is
applied to S,.

The definition of the bispectrum is the two dimensional Fourier transform of the

third moment sequence. In this study the bispectrum is a birange profile obtained

by computing a two dimensional Fourier transform of the third order autocorrelation
function which is function of freauencies fi, f, in the two dimensional frequency

doraain.
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Rs,(f1, f2) = E{S«(f)S:(f; + f1)S«(fi + f2)} (4.4)
BS:(RI’RZ) = ZZRSQ(flafZ) (45)
h h

exp (—j27/c[Rif1 + R f3])

where E{.} stands for the expected value and R,,(f1, f2) is the third moment se-
quence of S'(t) The birange is denoted by B,,(R;, R;) where R;, R; belong to the
two dimensional down range domain.

The bispectral estimates in this study are computed using the indirect classical
method which is based on computing an estimate of the third moment sequence.
Windowing can also applied to the estimates of the autocorrelation values. In this
study the optimum window (minimum bispectrum bias supremum) [10,11] is used.

The above definition can be used as an indirect way to estimate the bispectrum
but to get some kind of a physical insight of what the bispectrum really means it

is better to use the following which is considered as a direct way of estimating the

bispectrum.
1 X o [T
y(r) = J—V-Zs(f)exp(ﬂ??fﬁ) (4.6)
B, (r1,72) = Bu(r1)y(r2)y"(r1 +12) (4.7)

where y(r) is the impulse response and Bg,(Ry, R;) is the direct estimate of the
birange and £ is a constant (§ = ( %)2 where f, is the sampling frequency of the
radar frequency data. Thus, if y(r) is the impulse response of the radar backscatter
then the birange B, (R, R2) is nonzero only when y(r1),y(r2), and y(r1 + r2) are
not equal to zero. This is mostly the case when we have an interaction term amrong
different scatterers. Notice that &(ry,ry) = By*(ry)y(2r;) which indicates that there

exist scatterers at r, and 2r, respectively. Also, it is important to notice that;

b(r1,0) = y(r1)y(0)y*(r1) (4.8)
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which means that for the bispectrum to exist at either time (range) axis we need to
have a scatterer at r = 0 then the r, axis represents the impulse response, similarly
for the other axis. Thus if a scatterer exists at r = 0 then the bispectrum at the r
axis represents the impulse response.

An expression for the third moment sequence of complex data can be obtained

from the direct method as follows;

Rim.n) = E{SY(HS(f+m)S(f +n)} (4.9)
where

R(m.n)= R(r,m) (4.10)
Thus the only symmetry property for the bispectrum in this case is

Bs (R, Ra) = Bs,(Ra, Ry) (4.11)

Moreover, for complex data we can use more than one form of bispectrum as sug-
gested by Brillinger and Rosenblatt {12] and that is by placing the conjugate at
different combinations of g(f) However, the above definition is most appropriate
for interpretation purposes. Also, the real part of the radar data could be used only

to compute the bispectrum with little loss of information.

4.3 Classical Bispectrum Estimation Algorithms

Classical methods for bispectral estimation were used in this study. High res-
olution technique that involve ARMA modeling algorithins may be used also to
obtain bispectral estimates. Classical bispectral estimators, often called conven-
tional estimators are divided into two categories: Indirect methods that follow the
definition of the bispectrum as the two dimensional Fourier transform of the third
order moment sequence, and Direct methods similar to the periodogram estimate

of the spectral deunsity.




4.3.1 Indirect Method

Let {X(1),X(2),...,X(N)} be the frequency data set. Then the estimate of

the third moment sequence is

R(m,n) = -]1\7 Z XHXGE+m)X(:+n) (4.12)

f=31
where s; = max(0,—m,-n) and s, = min(NV —1,N~1—-m,N ~1—n). Then
the estimate of the bispectrum E(Rl, R;) as a function of range R is generated as:

L L
B(ry,rp) = >y R(m,n)W(m,n)exp (—jdr/c(rym + ron) (4.13)

m=—L n=-L
where L < N —1 and W(m,n) is a two dimensional window function. The optimum

window is used in this study and it can be generated from a one dimensional window

W(m,n) = d(m)d(n)d(n —m) (4.14)
d(m) = -:;Isin lLTEI + ( - |—n]§l> (cos %) , Im| <L
= 0, |m|>L (4.15)

The frequency and time domain responses of the two dimensional window are shown
in Figures 4.1-4.2. Notice that the optimum window has a wide main lobe and low

sidelobes.

4.3.2 Direct Method

Compute the impulse response Y (r):
N-1

Y(r) = % ki X (k) exp (—jdrkr [cN) (4.16)

A Hanning window d(m) may be applied to the frequency samples

2r(m — (N - 1)/2)
N-1

then the bispectrum can be computed over the triangle 0 < r, <r,;, ri+7r, < f,/2

d(im) = %(1 + cos( )) (4.17)

where f, is the sampling frequency.
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B(ry,r2) = Ky(ri)y(r2)y™(r1 + r2) (4.18)

where K is constant and depends on the spacing between frequency samples (A =
(%)2), fs is the sampling frequency of the data.

For sufficiently large number of data points, both methods provide unbiased es-
timates. In general classical methods have high variance and the estimates obtained
are not usually smooth. The advantage of using classical techniques is the fact that

fast computations algorithms such as the FFT are available.

4.4 Blade-Sphere Example

Consider a blade of wiath »; — 7y and a sphere at a distance r; — r; from the
trailing edge of the blade. The zero reference is set at a distance r¢ from the leading
edge of the blade (see Figure 4.3). It can be shown that if one considers four ray

paths the backscattered signal is;

SF) = Ar+ daexp(=j2er L) (419)
+As exp(—j27rr2-];l)
+Agexp(—72n(ry +r2 — ro)fcl)

assuming that the amplitudes A;, A2, A3, and A4 are frequency independent. The
corresponding amplitude and phase of this structure are shown in Figure 4.4. The
impulse response of the blade and sphere target as computed using the inverse
Fourier transform (with a Hanning window over a frequency band from 1.5 GHz
to 12 GHz) is shown in Figure 4.5. Note the one to one relationship for the first
three responses with the geometry of the target. The fourth response, however, is an
interaction term and there is no single discrete target component which corresponds
to it.

Figure 4.6 shows the bispectral response of the backscatter from the blade-sphere
combination without using a window. The bispectral response of the windowed third

moment sequence is shown in Figure 4.7. In these figures, ro = 0 (zero reference at
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leading edge of the blade). Note the response at (r; = 1.6meters,r; = 2.4meters)
which is due to interaction between the trailing edge of the blade and the sphere
and is represented by the term exp (—j2n(r; + ry — ro)é-). We can also notice the
twelve symmetry regions of the bispectrum.

If the value of rq is increased to 1 meter, the bispectral response shown in Figure
4.8 results. Note that all of the response terms have moved along the associated
diagonals, but the particular scattering and interaction terms are still observable.

A three dimensional display of the bispectral response is shown in Figure 4.9.

4.5 Bispectral Response of Noisy Data

If zero mean white Gaussian noise is added to the raw data, the resulting impulse
response and bispectral response are shown in Figures 4.10 and 4.11 respectively.
Note that the detectability of the target scattering terms is greatly reduced in the
impulse response, and noise components in the time domain can be misinterpreted
as discrete scatterers. This problem is less effective in the bispectrum case where
discrete scatterers and interaction terms can still be identified under the same noise
conditions used in the impulse response. This is due to the fact that in the bispec-

trum case the noise components at different frequencies are uncorrelated.

4.5.1 Mean Square Error

Consider the measured observation y( f) at frequency f. Assume that the noisy
data is y(f) = z(f) + ny where ny is a Gaussian distributed random variable. Also,
assume that the da*a are wide sense stationary. The frequency bandwidth is fs — f;
where f; > 0 Hz.

The third order autocorrelation function of the measured noisy data is;

Ry(fu, f2) = E{y(N)y(f + fy(f + f2)} (4.20)

then

R,/ fi. fa) = E{z(H)z(f+ f)z(f + f2)
+ z(f)inpepnsrn +(f + finmpep,
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+ z(f + fonmsrn +2(Hz(f + fi)ngss
+ z(f)z(f + fangen +2(f + f)z(f + f2)ng
+ N (4.21)

therefore

R,(f1, f2) = Rz(f1, f2) + E{Ra(f1) + Ru(f2) + Ru(fL — f2)} + BRu(f1, £2)(4.22)

However, for a Gaussian noise 8 = 0 then

Ry(f1, f2) = Rao(f1, f2) + *2{8(f1) + 6(f2) + 6(f1 = f2)} (4.23)

where 02 is the noise power.

The second order autocorrelation is given as

R,(F) = E{y(fly(f+ F)} (4.24)
= E{(z(H)+ng)(z(f+F)+nsr)}
= R.(F)+ Ru(F)
= R.(F)+ a*(F)

Consider the following as an error measure for estimating the impulse response for

noisy targets;
E; = E{ /t Iha(t) — hy(t)[2dt) (4.25)

where h,(t) and h,(t) represent the impulse response for noisy and noiseless data

respectively and E{.} stands for the expected value. Then E; can be written as ;

E; = B{ /f \HL(f) - Hy()Idf} (4.26)

using Parseval’s theorem. then FE) is equal to;

B = B[ In(5)Pd) (4.27)
E, = 202(fh—f1)
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If the spectral density is computed then the error measure is;
Bs = [IS:() - S,(t)"dt
= [ IR) = Ry Idf

= /fia%(fwdf
=0

Notice that in this case the mean-square error is not dependent on the bandwidth.

Consider the following as an error measure for bispectrum of noisy signals;

Eg = \/Z /; | Bx(t1,t2) — B, (t1,t2)]|%dt 1 dt (4.28)

where Bg(t1,t3), By(t1,t2) are the bispectrum for ideal noiseless data and noisy data
respectively. Then using Parseval’s theorem in two dimensions £p can be written

as;

Eo= /[ [, IRl f2) = Rulfu fa (4.29)

Then using equation (4)

Es = a%\/ S [ 16G) + 8(62) + 67— )P (4.30)
= 20%2\/(2+V2)(fa ~ f) (4.31)

Therefore :
Ep = Ej& i:r_‘f (4.32)

Therefore the mean square error is directly dependent on the frequency band-
width in the impulse response case as well as the bispectral response. However, in

the bispectrum case a new factor is included that depends on the signal itself.
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4.6 Bispectral Response For Dispersive Scatterers

The effect of dispersion in the data is shown in Figures 4.12 and 4.13. Disper-
sion is the result of scattering from a subcomponent of the radar target where the
scatterer behavior varies as a function of frequency. In this case, the behavior is

modeled as follows.

Ai(f) = Ai(1 + aexp(—kf;)cos(Bf;)) (4.33)

where

Ai(f,) = is the frequency dependent amplitude of the backscatter coefficient
from the i** scatterer. and
a, k, and @ are constants.
In this study, o = 0.6 and k = 0.01, and 3 = 20~x.

These figures show that the effect of dispersion is not critical to the bispectrum

resporse.

4.6.1 Single Edge Dispersion

The above form of dispersion effects the amplitude of the response only. In
general dispersion effects the amplitude and the phase of the radar back-scatter.
This type of dispersion results in energy loss along the physical target thus effectively
moving the scattering centers in the down range profile.

In this section we study the case where only one edge is dispersive in amplitude
and phase. This is rather a realistic model and matches to a certain extent scattering
from a rocket where the front end scatterer (the nose) is highly dispersive. In this

case the amplitude of the returned signal can be modeled as:

Ai(f;)) = A{(1 + aexp(-kf;)cos(Bf;)} exp(jp/ f) (4.34)

where p depends on the scatterer. This model indicates that scattering takes place
near the point of the nose for high frequency components and further away from

that point at low frequencies. Figures 4.14-4.15 show the impulse response and the
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bispectral response of this type of scattering. As expected the scatterers location
will be displaced and the response will be smeared. The bispectral response shows a
similar type of behavior except that the energy loss phenomenon and the frequency
dependent scattering is recognizable. Notice that the interaction term response
indicates vhat scaltoding vakies place svwewhere beiween e nose and the second

scatterer.

4.7 Bispectral Responses for Canonical Aircraft

Experimental data for scattering from a 6 Inches canonical aircraft for frequen-
cies between 1 — 18 GHz were used in determining the bispectral responses from
various components of the aircraft. Back-scattering from wing only, fuselage, fuse-
lage and stabilizer, and complete aircraft parts were measured at the Ohio State
ElectroScience laboratory [13].

Figures 4.16-4.19 show the bispectral response for such models corresponding to
different parts of the aircraft. In the case where the scattering from the fuselage
only is measured no considerable interaction term is observed. The addition of the
stabilizer introduces some interactions. In the case where only the wing is present, it
is shown that many high order scattering mechanisms take place along the wing area.
The bispectral response for the complete aircraft is dominated by the interactions
that take place in the wing area. These figures will help us understand bispectral
responses from real targets where many complicated scattering mechanisms are

involved.

4.8 Bispectral Responses for Commercial Aircraft

The compact radar cross section measurement range at the Ohio State Univer-
sity ElectroScience Laboratory[13] was used to make measurements of the radar
scattering of a set of 5 scale models of commercial transport aircraft (see Figure
4.20). The measurements were calibrated so that absolute values of amplitude (in
square centimeters) and phase (in degrees from an absolute reference plane) were
available over the band of frequencies from 1.5 to 12.0 GHz. This corresponds to

frequencies in the HF band for full scale aircraft and means that the targets are in
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the resonance region of the radar (ie: The wavelength is on the order of the target
size)[13].

Using the techniques described above (including the use of the optimum win-
dow function), the bispectrum of each radar target signature was computed. The
results are siowu wr Figures .21 to 4.25. Note that the different radar targets yicld
distinctly different bispectral responses. It can be shown that this implies that such
responses are likely candidates as features for radar target identification.

Since each radar target is being measured in the resonance region (as mentioned
above), it can be shown that the target signature is relatively insensitive to changes
in aspect angle. (especially the impulse response signature.) The result of taking
the bispectral response for the Boeing 707 as the aspect angle varies from 10 to 30
degrees is shown in Figures 4.26-4.28. It can be seen that the bispectral response is
rather stable between each 10 degree angle change. Figure 4.29 shows the bispectral
response of a 747 at 0 degrees azimuth and -5 dB signal to noise ratio (SNR). In

the next section bispectral images (as such) are used in classifying different targets.

4.9 Classification Methods

In this section we describe how to classify radar targets based on their bispectral
response using two dimensional cross-correlation. The concept of the “catalog” of
data will be used with a bispectral feature space. In this technique a catalogue of
noise free bispectral responses are used to determine the identity of a target from
which a noisy bispectrum is available. It is known (in this study) that the target
corresponds to one of the entries in the catalogue. First, the goal to find a catalogue
bispectral response that most closely matches the bispectral response Bj(ry,r;) of

an unknown target. That is to minimize

min{ [ [ (Biri,r2) - Bj(ry,ra)dridrs = (4.35)

miin{/_/Bf(rl,rg)drldrg+ //Bf(rl,rg)drldrz (4.36)

—//Bi("l,rz)Bj(Tl,Tz)drldrz} (4.37)
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where B;(ry,7;) and Bj(r,r2) are the bispectral responses Jf catalogue target : and

unknown target j. This requires maximizing

/ Bi(r1,72)Bj(r1,T2)dr1dry (4.38)
Ty VT2

and thic ran he done by <hifting B;(r;,7;) over all the domair of B:(r; r.) Thisis

equivalent to maximizing

fy, Jyy Bilr1,m2)B;(r1 + Ry, + Ry)dridr ~(4.39)

pij(Rla R2) = 1
[, L, |Bs(rs + Ru,r2 + Ry)[2dradrs]* ([, [, |Bi(ra,ra)|?dridrs)’

where p;;(R,, R,) is the normalized cross correlation coefficient of catalogue target
bispectral response ¢ = 1,2,...,5 and test target response j. Notice that the factor
in the denominator depends on R, R; and this is in order to compute a normalized

crosscorrelation.

4.9.1 Indirect method

Using Fourier transform identities and Parsevals theorem the cross correlation

can be written as

I2FT{R(f1, f2)R;(f1, f2)}
Fy 1
(V4 S [RCFr, £2)12dFdF) (1, Sy, (RS (Fr, £2) 2l ?

where I2FT stands for the inverse two dimensional Fourier transform and R}( fi, f3)

p,'j(Rl, Rz) = (4.40)

is the conjugate of R;(f), f2). For the discrete frequency case the cross correlation
1s
I2FFT{R:(f:, f2)R;(f1, f2)}
T T
[Ef, PIFA lRi(flafZ)lz] ’ [Zfl PIFA Rj(flvf?)P] ’

where I2F F't is the inverse two dimensional fast Fourier transform. The test target

p,'j(Rl,Rz) = (4.41)

is classified to a catalogue class ¢ if

pcj(Rl, Rz) = m'a.x{glla)%g p;j(RI, Rz)} 1= 1, ey 5. (442)
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4.9.2 Direct method

If the direct method for estimating the birange profile for radar targets was used

then the classification would follow as

o Compute the birange estimate of both catalogue target : and test target j as

Bi(ry,r2) = Byi(r1)yi(r2)yi(ry + 12) (4.43)

over the triangle A : vy < ry, ry+r2 < cm, andr; > 0. where 3 is a constant

and y(r) is the impulse response,

N-1
yi(r) = —;—T Z Xi(n)exp(j2rnr/N) (4.44)
n=0

and X(n) is the measured frequency data for target 2.

o Compute the crosscorrelation p,j{ R, It3) as

Yo Sor Bi(r1,m2)Bj(r1 + Ry,yra + Ry)

p,"(Rl, Rz) = (445)
’ [Srr Sre 1Bilrs, r2)I2E [T, T, 1Bi(r + Ruyra + Ro)P)E
where R;, R, € A .
e The decision rule is;
pei(Ri, R2) = m:qx{gll%)g pij(Ri,R2)} i=1,...,5. (4.46)

4.9.3 Comparison

The first method does not require bispectrum estimation but still requires esti-
mates of third order autocorrelation, while the second method requires computation
of two dimensional crosscorrelation but no third order autocorrelation. Also, the
first method involves a two dimensional window, while second method involves a
bispectral estimate of Hanning window. Another important difference is that the
first method requires computation of third order autocorrelation over all birange

domain while second method makes use of the triangular symmmetry. Moreover,
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R;(f1, f2) =

the first method requires third order correlation over all R;, R;, two dimensional
Fourier transform. The, second method requires one dimensional Fourier transform,
birange estimate over a triangle A, and crosscorrelation estimate of biranges over
A.

In order to compute a normalized cross correlation coefficient we need to com-
pute the normalizing factor VR;, R, € A. This is a major disadvantage for the
second method. Also, the decision criteria for the first method is over all R, R,

while the other method is over one triangle(1/8) of R;, R; domain.

4.9.4 Classification Algorithm

It has been shown that both classical methods in bispectrum estimation require
many computations if used for radar target identification. An algorithm that com-
bines both approaches can be implemented as follows;

1) Compute the Impulse response of the test target j using discrete Fourier trans-

form which can be implemented as Fast Fourier transform.
i Nf‘l
z;(r) = ~ jZJ Xi(flexvjdmfrfc— — — = — — = — — = — — — FFT (4.47)
=0

2) Compute the third order autocorrelation estimate

1
N2

Z > zi(r)zj(ra)z;(ri+12)exp jan(firy + farz)/c———2FFT\ . 48)

1 T2
3) Compute the cross correlation coefficient as

I2FFT{R f1, f2)R;(f1, f2)}

p,'J'(Rl, Rz) = T T~ — ~2FFT (449)
[Sh S lR(fr, )] [Sr T Bi(Fr )P
4) The test target is classified to a catalogue class c if
pcj(Rlv R2) = m,ax{g,la;%g pij(RlsRZ’)} 1= 1,"'75' (450)

In the above algorithm one one-dimeusional FFT and two two-dimensional FFt
are needed in order to compute the normalized cross correlation coefficient. Thus,

the above algorithm is most suitable for classification of large arrays of data in the
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frequency domain where the computation time saved due to the parallel computa-

tion feature of thc above algorithm becomes considerably large.

4.10 Radar Target Identification Example

A Mornte-Cadlo siinulation based on the Indirect Method was performed to eval-
uate the performance of the concepts discussed in this chapter where the bispectral
response was used as a feature for characterizing radar targets. The data base used
in this example has been used before in radar target identification studies [14,15,16].
The data base consists mainly of experimental measurements in tiie frequency band
from 1 — 12 GHz of scale models of commercial transport aircraft. A photo with
corresponding names of these aircraft are shown in Figure 4.20. Moreover, the scale
data corresponds to measurements of the radar cross section (RCS) of full scale
aircraft in the HF /VHF frequency band.

The classification algorithm is shown in Figure 4.30. In this algorithm Gaussian
distributed noise was added to the raw data (complex radar cross section mea-
surements RCS versus frequency). An estimate of the bispectral response of the
resulting noisy data is then computed using the indirect method. A two dimen-
sional cross-correlation was performed between the noisy bispectral response and
the catalogue ideal bispectral response. A decision is made in favor of the catalogue
with the lurgest cross ccorrelation. The same procedure is repeated for different
test targets. Figure 4.31 shows the actual algorithm used to evaluate the classi-
fication performance technique shown in Figure 4.30. In this algorithm the third
moment sequence of both noise free catalog data noisy data (additive noise) are
computed. The normalized inverse two dimensional fast Fourier transform of the
product of the two third order moment sequences is then computed. Decision is
made in favor of the class with the largest cross correlation with the unknown noisy
target. Decision statistics for each target are computed at each noise level and total
statistics of classification error are computed for all targets at a certain noise level.
One hundred experiments were performed for each test target (total of 500 experi-
ments). The entire test is repeated for different noise levels. Finally the percentage

of misclassification is plotted versus signal to noise ratio.
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Figure 4.32 shows the classification performance for five commercial aircraft
where complete azimuth information i1s assumed to be known. This performance
curve shows that bispectral estimates can be used effectively in radar target identi-
fication. Notice that the percentage of misclassification is zero for a signal to noise
.zti. higher than 0 dB.

The above example shows that reliable target identification can be achieved
using the bispectral response as a feature source. The classitication performance
can be further improved by developing a feature selection algorithm that can be
applied to the bispectral respenses of both catalogue and unknown test targets.
Furthermore, the classification approach used in this example is a non-parametric
technique that requires no a priori information about the parametric distribution

of the measured radar data.

4.11 Conclusions

In this chapter the application of bispectrum estimation to radar signature anal-
ysis is investigated. It has been demonstrated that a bispectral response of radar
backscatter signals has the advantage of identifying multiple interactions for com-
plex radar targets. This leads to the conclusion that higher order interactions of
radar backscatter may be identified using higher order spectral analysis. Such high
order interactions that are relatively smaller in the impulse response because of their
amplitudes may be recovered using high orders of spectral analysis. Therefore, the
bispectrum and other high order spectral analysis methods may be considered as
potential radar feature extraction techniques that may be effectively used jointly
with the impulse response in radar target identification. It is shown that bispectral
responses of radar backscattcr signals are relatively robust under conditions of high
noise and frequency dispersion. Finally, it has been shown that radar targets can be
successfully identified at zero dB signal to noise ratio using a simple classification

algorithm such as cross correlation.
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Figure 4.1: Optimum window (minimum bias supremum) in frequency domain.
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Figure 4.2: Optimum window (minimum bias supremum) in range domain.
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Figure 4.7: Bispectrum for blade-sphere r; = 1.6 m, r; = 2.4 m. with window
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Figure 4.8: Bispectrum for blade-sphere with ro = 1 m.
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Figure 4.9: 3-D bispectral response for blade-sphere combination
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Figure 4.11: Bispectrum for blade-sphere with noisy data (SNR= -30 dB)
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Figure 4.18: Bispectral response for wing at 0 degrees azimuth, 0 degrees elevation.
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Figure 4.20: Scaled drawings for aircraft used in experimental study
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Figure 4.21: Bispectral response for 747 at 0 degrees azimuth, 0 degrees elevation.
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Figure 4.22: Bispectral response for 727 at 0 degrees azimuth, 0 degrees elevation.
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Figure 4.23: Bispectral response for concord at 0 degrees azimuth, 0 degrees eleva-

tion.
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Figure 4.24: Bispectral response for DC10 at 0 degree azimuth, 0 degree elevation.
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Figure 4.25: Bispectral response for 707 at 0 degrees azimuth, 0 degrees elevation.
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Figure 4.26: Bispectral response for 707 at 10 degrees azimuth, 0 degrees clevation.
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Figure 4.27: Bispectral response for 707 at 20 degree azimuth, 0 degree elevation.
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Figure 4.28: Bispectral response for 707 at 30 degree azimuth, 0 degree elevation.
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Figure 4.30: Conceptual diagram for bispectral radar target classification algorithm.
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5. Investigations of Structural Pattern Recognition Methods for

Radar Target Identification

5.1 Introduction

One of the more troublesome aspects of the level-crossing based preprocessing
methods of [17] is the determination of conditional string probabilities by the his-
togram method. Convergence of the histograms as well as the issue of *.nclassifiable
strings unnecessarily complicates the investigation of inference of more sophisti-
cated language theoretic classifiers and the computation of the resulting classifiers
performance. To circumvent these difficulties, analytical methods for determination
of unsqueezed octant crossing and single level crossing have been developed.

Currently, the algorithms are being used to determine misclassification prob-
abilities by Monte-Carlo simulation. This method potentially allows for shorter
execution time than the histogram methods of likelihood function estimation used
previously, since conditional string probabilities need only be calculated for those
strings which occur during ihe Monte-Carlo test. Furthermore, the problem of
un-classifiable strings, as well as the problems related to the matched-noise phe-
nomenon are alleviated. The algorithms which are employed, their current and
possible future uses are described in the following section.

While extremely compact, the non-deterministic form of the a syntactic classifier
derived in [17] is not particularly revealing in terms of analyzing decision rules
induced by such a classifier. In order to gain insight into the resulting decision rules,
programs have been developed which convert these classifiers to a deterministic
form. The deterministic form resembles a tree classifier As such, it reveals the
relative discriminating power of particular symbol sstrings. This notion has
yet to be formalized.

The deterministic form of the classifier may be used as an analysis tool to help
understand how the grammatical inference methods are able to extend decision
rules generated by likelihood function estimation. Recall that when likelihood func-
tions estimated by the histogram method are used for decision rule generation (i.c.

decisions do not exist for every possible symbolic representation) the grammati-
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cal inference method allows the decision regions to ezrpand into areas of unknown
classification to reduce computational complexity (see [17]). Inspection of the
deterministic form of the classifier reveals the extent to which overlapping of the
decision regions induced by the grammatical inference method takes place. When
coupled with the analytical method of likelihood function estimation, this form of

the classifier will be able to quantify the gains realized by the expanded classifier.
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Figure 5.1: Conditional Probability Overlaps
5.2 Analytical Methods for Likelihood Function Determination

The basic algorithm is designed to calculate the conditional string probability
for each element of a catalog to within a given tolerance. The string probability
calculation procedures use this specified tolerance to determine allowable error for
each calculation in the process. These individual errors are set so that the total
string probability estimate is within the specified tolerance. The underlying pur-
pose for calculation of the conditional string probabilities is to make a decision as
to which catalog element the string was generated under. The maximum likelihood
estimate of the generating catalog element is determined by choosing the maximum
of the conditional probabilities. A decision can only be made if the band about the
maximuv n conditional probability (the width determined by the given conditional
probability tolerance) does not overlap any other bands (see Figure 5.1). Since little
is known about a given conditional string probability before estimation, the total
string probability tolerance is first set to some nominal value and the conditional
string probabilities are determined. If the situation exists, where the maximum

conditional probability overlaps some other conditional range of probabilities then
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the conditional probabilities are re-calculated with ar appropriately decreased tol-
erance. In this way, the conditional string probability estimation algorithms may
be used to make a Bayesian decision about catalog elements.

C'learly. the string probability calculation algorithms may be used for Monte-
Carlo test since it allows for a hard decision of any given string. However, these
algorithms will allow for grammatical inference with supervision. since the string
probability routines may act as a teacher. Furthermore, since the conditional proba-
bilities are available on demand, investigation of information content of the symbolic

representation 1s allowed for as well as investigation of the precise influence of noise

on the likelithood functions.

5.2.1 Conditional String Probability Estimation

Each of the probability calculation algorithms involve further layers of error-
control iteration beyond the decision process described in the section 5.2. This
sub-section describes the first two of these layers. They are common to both the
octant crossing and single level crossing schemes and, with modification, would
apply to any symbol assignment scheme with adaptive thresholds.

The first layer of error control iteration, accounts for variations in the magnitude
threshold by approximating it with a normal random variable. The thresholds of
the double level crossing are dependent upon the maximum and the minimum of
observed measurements and, as such, involve order statistics of independent Rician
random variables,

The second layer of error control iteration involves the relation between individ-
nal symbol error and total string error. The technique developed in this section is
valid for any symbol assignment scheme in which each symbol corresponds to an
independent event. The individual symbol probability estimation procedures are

described in the following section.

Magnitude Threshold as a Random Variable

By the definition of the single level crossing and octant crossing schemes. the

magnitude threshold used in these schemes is the sum of the individual magnitudes
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Equation (3.1). Since the threshold used for string generation is a function of the
observation, it too is a random variable. Thus conditional string probabilities are
calculated under the assumption of a fixed threshold and integrated with respect
to the threshold density to determine the probability of a given string conditioned

ouly on catalog clement.

T = ()] (5.1)

N &

1 &
1=
In equation (5.1), T is the magnitude threshold N represents the number of

measurements taken and a; is the /th noisy measurement.
P(SIC’J:/v"P(S!T:t,Ci)P(T=t|C;)dt (5.2)

The individual magnitudes of the observation vector are Rician distributed ran-
dom variables, by assumption of independent Gaussian noise. Equation (5.1) in-
dicates that the magnitude threshold is a weighted sum of these Rician random
variables. Thus, by the central limnit theorem, it is reasonable to assume that the
magnitude threshold for both schemes is, conditionally, a Gaussian distributed ran-
dom variable. Furthermore, the central limit theorem indicates the statistics of the

magnitude threshold.

And so Equation (5.2) becomes:

P(S|C) = —

- ()
, / P(S|T=tCe V7 ) gt (5.4)
Arg2 I
I equations (5.3) and (5.4) ji, i- the threshold mean and 47 is the threshold variance.
They are calculated from components of the measurement vector mean ,E [z?], and

2
second moment, E [z]°.

N
1

o= TZE[Z’] (&

=1

ot
(1]
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ot = X (B[] - EED) (5.6)
N ¢
=1
The components of the measurement vectors’ mean and second moment are, in
turn functions the magnitude of components of the noiseless measurement vectors,

2
i, . and the per-channel noise variance, o (the quantity g¢; is the ratio % .

, T za i i -~
et = FeFe o ($) +an (4)

E [72] = pl +20° (5.8)

The Gaussian Quadrature method is used to approximate the ir-=gral of Equa-

tion (5.2) with a sum (see Reference [18)]).
k=1

This method chooses the abscissas (zx) and the weights (Hj) in such a way as to
minimize the error between the integral and the sum; exact answers are obtained for
polynomials of degree m — 1 or less. Gaussian Quadrature with Hermite weighting
2

is used to approximate integrals with weighting functions of the form w(t) = e~

Thus a change of variable is made to put Equation (5.4) into such a form.

P

r = h(t) = —L (5.10)
Ot

t=h"Yz) =6,z + i (5.11)

And so Equation (5.4) becomes:

1
Vo

Gaussian Quadrature with Hermite weighting may now be used to approximate

P(S|Ci):

/_°° P(S|T = h(z),Cie " dx (5.12)

the integral of Equation (5.12):

P(S|C,) = f:ﬁkP(S | T = h™Y (&), Cy) (5.13)

k=1

83




The error associated with an estimate using Gauss-Hermite Quadrature is given
in Reference [18] as:

Vrm!

Hm
Z

E = f[tl,tl,tZatZa~--3tm7tm)£1] (514)

To obtain an estimate of this error, the divided difference (f [t1, 1,2, 82, . ..y Tyt &)

of the string probability function is obtained by evaluating this function at 2m + 1
points instead of m points as required by the Gauss-Hermite Quadrature rule. This
procedure more than doubles the computation time required to calculate the proba-
bility of a given string, however, this is necessary to control the error and arrive at a
valid decision. Once this error is obtained, it is compared with the designated error
of the string probability function and the total error is taken to be the maximum

of the two.

String Probability Error vs Symbol Probability Error

Both algorithms build up total string probabilities from individual symbol prob-
abilities. Since the noise corruption is assumed independent between measurements,
any given string probability is the product of the constituent symbol probabilities.
Thus, in the absence of estimation errors the true total string probability, P(S), is

related to the true symbol probabilities, P(a;) by:
N
P(S) = ] Pla)) (5.15)
=1

However, exact values of the symbol probabilities are not available. Thus if
we define the total string absolute error to be E and the ith symbol probability
absolute error to be €; then equation (5.15) becomes:

N
P(S)+E = [[(P(a:) + &) (5.16)

=1
As stated above, total string probabilities are calculated to within a given tolerance.
In order to guarantee that relative error on the total string probability is below some

maximum (E a maximum relative error for symbol probability estimation

relmax s
is supplied to symbol probability estimation routines. The defining property of the

relative maximum symbol probability error is:
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€:
t < 3 < .
‘P(q_ V1<i<N (5.17)

This maximum relative error for the symbol probabilities is calculated from the

designated string probability relative error by:

VE 1-1 (5.18)

€relmax — relmax T

Thie guarantees that the actual total string relative error will be less than the

designated maximum since:

E = HP(a,)+ 1‘[ P(ai)en + 1’[ P(a;)en—1P(a))+ ... (5.19)

FNg

E( “ )3 3 ( ( = ) (%, 21)

i=1 P(ai)) i=1 j=i+l P(a,)) P(a;) o
N €; €; €k

2P (P(a >) (P(a») (P(ao) ’

ng—‘ < vl T fj S (5.22)
\P(S)| — S P(a;) i=1 j=i4 P(a) P(a;)
+N—2 Ny—‘l % . ¢ o |,
S S | Pla)| | Pla;) || Pax)
N,
ey




‘~———~E | N N 2 N 3 59
'P(S ’ < 1 €relmax 5 €relmax T 5 €relmax + - (5.23)
N N
+ ( N ) €relmax

| E N 3
‘P( )‘ s (1 + Erelrnax) -1 (5.24)

E | -
!P(S) < Elelmax (5.25)

5.2.2 Conditional Symbol Probability Calculations

Estimation of the conditional symbol probabilities makes use of standard rou-
tines for calculation of the error function or the Marcum Q function. Parls method [19]
of recursively computing the Marcum Q function was used for single level crossing
strings. The region of integration for the octant crossing symbol assignments is not
the standard rectangular region usually associated with a bivariate normal rando:n
variable. As such, approximations to the region are made by sums of probabilities
with rectangular regions of integration. This extension of the bivariate normal cu-
mulative distribution function routine is considered the only source of error for the

octant crossing symbol probability routine.

Octant Crossing

Octant crossing total string c... _..tional probability estimates are made trom cor-
responding symbol probability estimates. By assumption of independent Gaussian
noise, an individual octant crossing symbol probability given a particular threshold,

catalog element and location within the string, may be estimated by the formula:

L(a=m)? aoromy?
Pla; | T =tC;1) = 1 /ﬂ e~ 31(55) ¢ 3 (5% dud (3.26)

2na?

In equation (3.26), §2,, is the region of plane corresponding to symbol a,. The
symbols z; and y, are the real and imaginary component of the ith measurement.
The integral in equation (5.26) is calculated by transforming the coordinates so

that the region Q, corresponds to the 7th or 3rd octant (see Figure 5.2). Since
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octant [ phase [ magnitude
G-90 below
90-180 below

8
2 1
180-270 below
3
7

v

270-0 below
0-90 above
90-180 above
180-270 above
8 270-360 above

S O e W -

-~

Figure 5.2: Octant crossing primitive assignments.

calculating the probability of a rectangular region, of a Gaussian bivariate random
variable is relatively simple, the probability of the 7th octant is approximated with
che sum of probabilities of such regions. This is accomplished by first determining
a lower bound for the integral.

This lower bound is taken to be the integral over a staircase shaped region which
approximately covers the 7th octant region and is inscribed by the 7th octant region
(see Figure 5.3). The staircase region is determincd such that the points of the stairs
are equally spaced in angle. The probability of the staiicase region is determined
from a sum of the probabilities of rectangular regions. An upper bound for the
integral is then calculated by summing the lower bound with a sum of probabilities
of rectangular regions between the inscribed staircase region and a circumscribing
staircase region. Thus, the resulting region integration of for the upper bound
probability value completely covers the Tth octant region (see Figure 5.4).

If the difference between the upper and lower bounds is sufficiently small then the
total 7th octant probability is taken to be the average of the two values. Otherwise
the angular spacing is halved and the binding probability measures are re-calculated.

The probability of the 3rd octant is calculated in a similar manner.
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Octant 3

S

Staircase region

Figure 5.3: Inscribed staircase region, 5 points

Staircase region

Figure 5.4: Circumscribed staircase region, 5 points
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Single Level Crossing Conditional Symbol Probability Calculation

For a fixed threshold, the definition of the single level crossing scheme indicates
that the probability of an entire single lcvel crossing string may also be calcu-
lated as the product of probabilities of a series of Rician random variables being
above or below the given threshold. For simplification of the program, single level
crossing strings are transformed into a strings of binary symbols in which each sym-
bo!l indicates “above” (1) or “below” (-1). These symbols are thus considered the
constituent symbols of the strings and total string probability (given the catalog
element and the threshold) in equation (5.2), etc. is estimated by the product of the
probabilities of a series of Rician random -ariables, all exceeding or falling below
the given threshold. Thus, the probability of a transformed single level crossing
symbol is “above” the threshold, given a particular threshold, catalog element and

location within the string may be estimated by the formulas:

2,2 \?
o iz +u,‘)
Pla; | T =t,C5,1) = /; -5—26 2( IO<Z;L2Z'>dZ (5.27)
5 U
= Q (%’ ;) (5.28)

In equation (5.28) u,, and o are as defined above and Q, is the Marcum Q function.
The “below” case is calculated using different integration limits or the comple-
mentary Marcum Q function. Total string probability is calculated from products

of these symbol probabilities.

5.2.3 Conclusions and Results

Comparison of likelihood functions generated with the analytical methods and
those generated by the histogram method are similar for the noise levels which
have been run. Misclassification results are given in Figures 5.5 and 5.6. These
figures represent results obtained under the assumption of completely known noise
variance. It is expected that the same matched noise phenomenon exhibited by the
single level crossing scheme under the histogram method will appear if mismatched

uoise levels are used.
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Figure 5.5: Octant crossing vs. coherent nearest neighbor

For comparison purposes, results from competing algorithms which employ the
entire measurement vector. While the performance of the nearest-neighbor classi-
fiers is usually better than that of the level-crossing classifiers, the level-crossing
based pattern representations can be specified with only 35 to 3 the number of
bits required by the nearest-neighbor specification. Thus, while the level-crossing
observations cannot be considered “sufficient statistics” they are highly information
preserving.

The consequences of this new algorithm are far reaching. Inference of more
complex generating grammars requires the use of an informant [20]. The informant
in these algorithms is expected to answer queries about the applicability of any given
string. With the histogram method of likelihood function estimation, knowledge of
the category of a given string is dependent upon the conditional probability of
occurrence of that string. If, for all catalog elements, a string occurs with very

small probability then it may take a very long time for knowledge of the category
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Figure 5.6: Single level crossing vs. nearest neighbor

to become available. The fact that any arbitrary string may be classified, no matter
how small the conditional probability of occurrence, means that automatic inference
of more complex generating grammars is possible with this technique.

The ability to classify a given symbolic representation quickly and easily also
provides more flexibility in terms of classification algorithm design. The major hin-
drance in the determination of the symbolic representations conditional probability
is the dependence on the adaptive magnitude threshold. It is proposed that the in-
vestigation of non-parametric syntactic pattern recognition techniques include the
investigation of symbolic representations which do not include adaptive thresholds
which are calculated over the entire range of measurements. Such symbolic assign-
ment algorithms could represent quantities such as differential phase or magnitude.
Furthermore, inference of the generating grammar for such symbolic assignments
could be made directly from noiseless measurements.

It is conceded here that there exists no reason to believe that the generation of
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such ad-hoc symbolic representations can be accurately modeled, in general, with a
given generating grammar. However, by restricting the range of measurements and
using automatic methods of inference, a simple classifier which uses an extremely
distilled statistic of the full observation has been demonstrated to give good per-
formance, even when compared to a classifier using the original vector observation.
Continued exploration in this area may provide insight into the “structure” of such
measurements.

As a further note, computation time for these strings can be exceedingly long.
This becomes true when string probabilities are close for two or more catalog ele-
ments. Much effort has been expended on increasing computational efficiency. Some
improvements have come about from novel storage and retrieval schemes of string

and individual symbol probabilities.

5.3 Conversion of Syntactic Classifiers to Deterministic Forms

The syntactic classifiers derived in [17] are non-deterministic in nature. This
means that there may be more that one production rule which is applicable to a
particular nonterminal in a sentential form. In terms of automata, the transition
function may have more than one value for a given state and symbol (the automata
may have more than one place to “go” on a given symbol). Deterministic forms of
automata or grammars do not.

Derivation of a deterministic form for the syntactic classifier from the non-

deterministic form can be summarized as:

1. Label the stop state each catalog elements automata with the corresponding

catalog element name.

2. Merge the non-deterministic automata with labeled stop states together by
adding a new start state with e (null string) transitions to the start states of

each of the automata.

3. Convert the resulting non-deterministic, merged automata to a deterministic

form.
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The conversion to a deterministic form is a well known process. It is fully
describe in [21]. One of the more noteworthy aspects of the process is that each
state of the deterministic form of the automaton is equivalent to a set of states of
the non-deterministic form of the automaton. This leads to the fact that there are
potentially 2" states in the deterministic form of the automaton, where n is the
number of states in the equivalent non-deterministic automaton.

Furthermore, the stop states in the deterministic form are determined from the
stop states of the non-deterministic form. Specifically a state in the deterministic
form or the automaton is a stop state for catalog element ¢ if the stop state for
catalog element : is contained in this state. Since states of the deterministic form
of the automaton correspond to sets of states from the non-deterministic form it is
easy to see that stop states can potentially correspond to acceptance of a string by
more than one catalog element. This is the result which allows for analysis of the

grammatical inference procedure.

Even though application of the algorithm for derivation of the deterministic
automata has potential to increase the number of states exponentially, it has, as
a rule, decreased the number of states. Application of the algorithm to derived
automata has revealed a number of multiply accepting states are present in the
classifier. These states may be “traced back” to determine exactly which strings

are being accepted in a multiple sense.
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Figure 5.7: Conversion to deterministic form, (a) non-deterministic automata set
with labeled final states. (b) merged non-deterministic automata. (c) resulting

deterministic automata
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